The ATLAS Experiment at LHC Status and First Results

Beate Heinemann, UC Berkeley and LBNL SLUO, SLAC, August 2010

Outline

Introduction

- LHC and ATLAS
- Data Taking, Luminosity and Trigger+DAQ

First Physics Results

- Minimum Bias
- J/psi and Upsilon
- Jets
- W's and Z's
- Towards Top
- New Physics

The Large Hadron Collider (LHC)

Muon System: $|\eta|$ <2.5

- Precision chambers (MDT and CSC)
- Trigger chambers (RPC and TGC)

Luminosity

- Delivered ∫Ldt=3.6 pb⁻¹
 - calibrated using a Van-der-Meer scan to 11% precision
 - Dominated by 10% uncertainty on beam current normalization
- ATLAS recorded 93.9% of the data on tape

Peak Luminosity Evolution

$$\mathscr{L} = \frac{n_b f_r I_1 I_2}{2\pi \Sigma_x \Sigma_y}$$

Protons/bunch $I_1 \approx I_2$	10 ¹¹
# of bunches n _b	up to 36
beam size $\Sigma_{\mathbf{x}} \approx \Sigma_{\mathbf{y}}$	60 µm
Revolution frequency f _r	11 kHz

- LHC achieved 10,000 fold increase in past 6 months
 - increase in bunch current (factor 10²) and number of bunches (factor 36) and decrease in beam size (factor 3)
- Aim at increase by another factor of 10 by end of Oct.
 - $L=10^{32} cm^{-2}s^{-1}$ equivalent to ~10 pb⁻¹ in 24h

ATLAS Detector Operation

Operational Fraction:

 97-100% of subdetector channels fully operational

Data Quality:

 94-100% of data good for physics analyses

Fraction of recorded data with subdetector good

Inner Tracking Detectors			Calorimeters				Muon Detectors			
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	TGC	csc
97.7	96.4	100	94.4	98.7	99.3	99.2	98.5	98.3	98.6	98.3
Luminosity weighted relative detector uptime and good quality data delivery										

during 2010 stable beams at Vs=7 TeV between March 30th and August 14th (in %)

Trigger and DAQ

- Collision rate:
 - 1st 2010 run: 50 Hz
 - Recent runs: 200 kHz
- Trigger rate today:
 - L1 ~10 kHz
 - To tape: ~300 Hz

L1 Trigger

High-Level Trigger ***

- High-level trigger commissioned
- Used also for online beamspot measurement
 - Important e.g. for b-jet trigger

Minimum Bias Physics

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Run Number: 152166, Event Number: 316199
Date: 2010-03-30 12:58:23 CEST

one of the first 7 TeV collision events recorded on March 30th

Minimum Bias Physics

- Total cross section ~100 mb
 - About 70% inelastic
- Measurements of charged particle multiplicities in
 - Inclusive selection
 - Diffraction enhanced selection
 - Underlying event dominated regions
- Rely on understanding of low p_T tracking of charged hadrons
 - Also important for b-tagging

Inner Detector: Material

Map material using hadronic interactions

Map material with photon conversions

- Excellent agreement between data and simulation
 - Small discrepancies already fixed for new MC production starting now

Inner Detector: Resolution, Scale and particle ID

Particle identification using Pixel dE/dx and TRT transition radiation

Inclusive Charged Particle Spectra

- Systematic error ~3%
- MC models agree to within 50%
 - But require further tuning
- Multiplicity rises with energy

Charged Particles in diffractive events, the Underlying Event and Jets

Charged particle spectra in diffractive-enhanced sample: veto events with hits on both sides of MBTS detector

Phojet describes data best

Charged Particles in diffractive events, the Underlying Event and Jets

Charged particle spectra in diffractive-enhanced sample: veto events with hits on both sides of MBTS detector

Phojet describes data best

Charged Particles in diffractive events, the Underlying Event and Jets

MC tunes have varying success in describing the fragmentation

both at 0.9 and 7 TeV

23

J/ψ and Y

Dimuon Mass Spectrum

Will now also constitute excellent calibration samples

J/ψ Cross Sections

- Kin. range: p_T=1-12 GeV, |y|<2.25
- Syst. Uncertainty ~30%
 - Completely dominated by polarization uncertainty
- p_T and y-dependence of $\sigma(J/\psi)$ agrees with Pythia color octet model
 - Normalization off by factor 10

J/ψ Cross Sections

- Kin. range: p_T=1-12 GeV, |y|<2.25
- Syst. Uncertainty ~30%
 - Completely dominated by polarization uncertainty
- p_T and y-dependence of $\sigma(J/\psi)$ agrees with Pythia color octet model
 - Normalization off by factor 10

Prompt fraction determined From pseudo-proper time distribution

$$\tau = \frac{L_{xy} m(J/\psi)}{p_T(J/\psi)}$$

Jets

Raw measured jet energy: 300 GeV

Calorimeter Response

- Calorimeter energy in R=0.2 cone around track / track p
- Measures response of calorimeter to charged pions
 - Critical for jet calibration

Data generally very well described by MC

Inclusive Jet Cross Section

Jet Energy Scale uncertainty 6-10% depending on pT and η (dominated by EM scale and hadronic shower model)

Workshop on SLAC last week

- Jet cross section measured using anti-k_T algorithm
 - Up to $p_T = 500 \text{ GeV}$ (with 17 nb⁻¹)
 - Dominant systematic uncertainty: jet energy scale
- Data in good agreement with QCD prediction

Dijet Mass

Excellent agreement of data with QCD prediction

W→ev_e

$W \rightarrow \mu V_{\mu}$

W's

- p_T(e/μ)>20 GeV (isolated), E_T^{miss}>25 GeV, m_T>40 GeV
 - about 3000 candidates/lepton type in ∫Ldt=1 pb⁻¹
- Data well modeled by simulation

$Z \rightarrow e^+e^-$

Run Number: 154817, Event Number: 968871

Date: 2010-05-09 09:41:40 CEST

 $M_{ee} = 89 \text{ GeV}$

Z-ee candidate in 7 TeV collisions

$Z \rightarrow \mu^+ \mu^-$

Run: 154822, Event: 14321500 Date: 2010-05-10 02:07:22 CEST

 $p_{T}(\mu) = 27 \text{ GeV } \eta(\mu) = 0.7$ $p_{T}(\mu) = 45 \text{ GeV } \eta(\mu) = 2.2$ $M_{\mu\mu} = 87 \text{ GeV}$

Z→μμ candidate in 7 TeV collisions

Z's

- Two leptons with p_T>20 GeV
 - About 200 (300) Z candidates in e⁺e⁻ (μ⁺μ⁻) channel in ~1 pb⁻¹
 - Very precious for detector calibration
- Resolution in data slightly worse than simulation
 - Calibration and/or alignment efforts ongoing

W and Z Cross Section

Process	Data	Background	L (nb ⁻¹)	Cross Section (nb)
W->ev	46	2.6±0.4	17	$8.5 \pm 1.3 (stat) \pm 0.7 (syst) \pm 0.9 (lum)$
W->μν	72	5.3±0.7	17	$10.3 \pm 1.3 (stat) \pm 0.8 (syst) \pm 1.1 (lum)$
Z->ee	46	0.49±0.09	219	$0.72 \pm 0.11 $ (stat) $\pm 0.10 $ (syst) $\pm 0.08 $ (lum)
Ζ->μμ	79	0.17±0.01	229	$0.89 \pm 0.10 (stat) \pm 0.07 (syst) \pm 0.10 (lum)$

Towards the Top Quark

W and Z+jets

- Major backgrounds to top and New Physics searches (e.g. SUSY)
- Raw N_{jet} spectrum agrees well with MC (Alpgen+Herwig)
 - Already ~100 W+3-jet
 events in 1 pb⁻¹ of data
- Looking forward to corrected cross sections to be compared with NLO QCD predictions
 - E.g. recent predictions by BLACKHAT collaboration

Similar result available for Z+jets

Towards the Top Quark

Number of jets

120

100 -

60 40

20

- Theoretical cross section: 160 pb
- $p_T(e/\mu) > 20 \text{ GeV}, E_T^{miss} > 20 \text{ GeV}$
- 4 jets (p_T>20 GeV), at least one b-tagged
 - B-tag based on secondary vertex
 - Decay length significance well modeled: require L/σ(L)>5.7
- In 0.3 pb⁻¹: observe 11 events

SV0 selection

• Data 2010

ATLAS

Preliminary

 $\sqrt{s} = 7 \text{ TeV}$

 $L = 0.4 \text{ nb}^{-1}$

cut

Simulation

b jets

c jets

light jets

New Physics

New Physics Potential

- JLdt=1 fb⁻¹ at LHC competitive with 10 fb⁻¹ at Tevatron for many high mass processes
 - Already competing now for some new physics scenarios though!

Supersymmetry Searches

4 jets+0 leptons, $p_T^1>70$ GeV, $p_T^{2,3,4}>30$ GeV

- E_T^{miss}>40 GeV
- $d\phi(E_T,p_T^{jet})>0.2$
- $E_T/M_{eff} > 0.2$

000

- Data consistent with background
 - Excellent control of missing E_T
- Possibly sensitive beyond Tevatron for non-mSUGRA type models already
 - Alvez, Izaguirre, Wacker: arXiv:1008.0407

Supersymmetry Searches

4 jets+0 leptons, $p_T^1>70$ GeV, $p_T^{2,3,4}>30$ GeV

- Data consi
 - Excellent
- Possibly se Tevatron for models alre
 - Alvez, Izagu

- $-p_T^1>70 \text{ GeV}, p_T^{2,3}>30 \text{ GeV}$
- $E_T^{miss}/\sqrt{\Sigma}E_T>2\sqrt{GeV}$

Dijet Resonance: q*

- $p_T^{jet1}>80 \text{ GeV}, p_T^{jet2}>30 \text{ GeV}, |\eta^{jet1}-\eta^{jet2}|<1.3$
- No evidence for peak in dijet mass spectrum
- Constrain m(q*)>1.26 TeV
 - Supersedes published CDF limit of 0.87 TeV (with 1 fb⁻¹)

arXiv: 1008.2461 submitted to PRL

More Searches for New Physics

Conclusions and Outlook

- The LHC era has started
 - LHC performance remarkable and improving week by week
 - On track for 1 fb⁻¹ in 2011
 - ATLAS is efficiently taking high quality
- ATLAS has made many physics measurements
 - Thanks to excellent performance of detector, simulation, reconstruction, data distribution (grid) ... and many many people!
 - Major contributions to many aspects by US west coast
- If Nature is kind LHC experiments can find something in 2010/2011

How to get to 1 fb⁻¹?

	LHC (now)	LHC (end of 2010)	LHC (design)
1/0 [To\/]	7	7	14
√s [TeV]	1	1	14
# of colliding bunches	Up to 35	384	2808
Protons/bunch [10 ¹⁰]	10	10	11.5
Energy stored (MJ)	2.7	21.5	362
Peak Luminosity	1x10 ³¹	~1 x 10 ³²	10 ³⁴
[cm ⁻² s ⁻¹]			
Integrated Luminosity	3 pb ⁻¹	~40 pb ⁻¹ (?)	10-100 fb ⁻¹ /yr

(* plan constantly adjusted in reaction to what is learned)

- In following weeks
 - Increase number of bunches each week by factor ~2
 - Involves using "bunch trains": 150ns separation between collisions
- 2011
 - Further focus the beam (β^* : 3.5m => 2m)
 - Deliver ∫Ldt=1 fb⁻¹ (requires e.g. 30% LHC up-time at 1.5 x 10³² cm⁻²s⁻⁴)